翻訳と辞書
Words near each other
・ Kanwaljit Soin
・ Kanwar Arsalan
・ Kantonsschule Küsnacht
・ Kantonsschule Rämibühl
・ Kantonsschule Solothurn
・ Kantonsschule Uster
・ Kantonsschule Zürcher Unterland
・ Kantonsschule Zürich Nord
・ Kantonsspital St. Gallen
・ Kantor
・ Kantor (surname)
・ Kantor Berita Radio 68H
・ Kantor double
・ Kantora District
・ Kantorovich inequality
Kantorovich theorem
・ Kantorowice
・ Kantorowice, Opole Voivodeship
・ Kantorowicz
・ Kantorówka
・ Kantor–Koecher–Tits construction
・ Kantosi language
・ Kantou
・ Kantou, Cyprus
・ Kantoumania
・ Kantowo
・ Kantowski-Sachs metric
・ Kantox
・ Kantragada
・ Kantri


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kantorovich theorem : ウィキペディア英語版
Kantorovich theorem
The Kantorovich theorem is a mathematical statement on the convergence of Newton's method. It was first stated by Leonid Kantorovich in 1940.
Newton's method constructs a sequence of points that—with good luck—will converge to a solution x of an equation f(x)=0 or a vector solution of a system of equation F(x)=0. The Kantorovich theorem gives conditions on the initial point of this sequence. If those conditions are satisfied then a solution exists close to the initial point and the sequence converges to that point.
== Assumptions ==
Let X\subset\R^n be an open subset and F:\R^n\supset X\to\R^n a differentiable function with a Jacobian F^(x) that is locally Lipschitz continuous (for instance if it is twice differentiable). That is, it is assumed that for any open subset U\subset X there exists a constant L>0 such that for any \mathbf x,\mathbf y\in U
:\|F'(\mathbf x)-F'(\mathbf y)\|\le L\;\|\mathbf x-\mathbf y\|
holds. The norm on the left is some operator norm that is compatible with the vector norm on the right. This inequality can be rewritten to only use the vector norm. Then for any vector v\in\R^n the inequality
:\|F'(\mathbf x)(v)-F'(\mathbf y)(v)\|\le L\;\|\mathbf x-\mathbf y\|\,\|v\|
must hold.
Now choose any initial point \mathbf x_0\in X. Assume that F'(\mathbf x_0) is invertible and construct the Newton step \mathbf h_0=-F'(\mathbf x_0)^F(\mathbf x_0).
The next assumption is that not only the next point \mathbf x_1=\mathbf x_0+\mathbf h_0 but the entire ball B(\mathbf x_1,\|\mathbf h_0\|) is contained inside the set ''X''. Let M\le L be the Lipschitz constant for the Jacobian over this ball.
As a last preparation, construct recursively, as long as it is possible, the sequences (\mathbf x_k)_k, (\mathbf h_k)_k, (\alpha_k)_k according to
:\begin
\mathbf h_k&=-F'(\mathbf x_k)^F(\mathbf x_k)\\()
\alpha_k&=M\,\|F'(\mathbf x_k)^\|\,\|h_k\|\\()
\mathbf x_&=\mathbf x_k+\mathbf h_k.
\end

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kantorovich theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.